Trinity River Watershed Monitoring

California Department of Fish and Wildlife Steelhead Report Card Dashboard

The California Department of Fish and Wildlife (CDFW) tracks steelhead angler effort and success through a reporting program. This reporting program consists of a mandatory report card that all steelhead anglers need to have in their possession while fishing. Anglers record each day that they fish, where they fish, how many fish they catch, and whether those fish are from a hatchery (determined by the lack of an adipose fin, which is removed by hatchery staff before the fish is released), or were spawned in the wild (determined by the presence of an adipose fin).

Each year, anglers are required to send these report cards back to CDFW, either physically or by entering the information online.

After many years of collecting data, CDFW recently released a compilation of raw summary data for the period of 2012-2023 (linked here). The data set can be sorted by area (the Trinity River is one of 20 river systems or regions), season, or month, and shows the numbers of fishing trips, the number of hatchery steelhead caught, and the number of wild steelhead caught.

The Klamath River and tributaries (except the Trinity River) stands out as an exceptional fishery. The Trinity River is not too far behind it among the 20 steelhead fisheries in the state.

It’s important to understand that while the raw data is informative, it is only a starting point toward understanding the fisheries. For example, in many systems, including the Trinity, hatchery production has changed substantially over the time period that the dashboard shows. Some hatcheries have reduced steelhead production by as much as 40%, which has an obvious bearing on the average number of steelhead caught per trip. Conversely, this data set covers two of the most severe droughts that Northern California has ever experienced. Droughts can leave the smaller tributary streams, which are usually off-limits to fishing because steelhead prefer to spawn in smaller streams, too dry for fish to migrate into. So, they remain in the mainstem river where people can catch them more readily than in normal or wetter years when they would have migrated into their spawning streams earlier. Tribal harvest methods, too, have changed in this time period and are much more selective for hatchery steelhead (identified by their lack of an adipose fin) over wild steelhead.

Still, this dashboard can be very useful for planning where and when to go on a steelhead fishing trip. And steelhead anglers should be happy to see the data that they carefully record and report is going to good use!

The Language of Sediment

Rivers are dynamic ecosystems shaped by multiple interacting and overlapping physical and biological processes. A fundamental aspect of a river’s ecology is sediment, which is the foundational underpinnings of habitats, influence for water quality, and support for wildlife. In this article, we explore terminology and features of Trinity River sediments, the building blocks of our river system.

What is Sediment?

Although it might seem obvious, all sizes of rocks fit into the larger family of sediments. Sediments are inorganic particulates that can be transported by water, wind, or ice and deposited and perhaps stored for long periods of time in a particular location. In rivers, sediment is further classified according to its diameter and composition:

  • Clay (Particles smaller than 0.002 mm): Clay transports while suspended in the water column and when deposited can store nutrients aiding the growth of biology when organics chemically bind to individual clay particles.
  • Silt (Particles 0.002 mm to 0.063 mm): Silt also transports suspended in the water column and can affect light penetration and aquatic plant growth, just as clay particles do. Clays and silts that cloud the water also provide cover for fish, which use the cloudy water as protection from predators and tend to survive at higher rates when available intermittently.
  • Sand (Particles 0.063 mm to 2 mm): Sand provides a medium for plants to establish and grow. This sediment type provides rearing habitat for juvenile lamprey when located in deposits below large rocks or trees, and acts as a filter to benefit water quality when deposited between gravel particles.
  • Gravel (Particles 2 mm to 64 mm): Ranging from the size of a small blueberry to a large kiwi, gravel offers essential spawning grounds for fish and invertebrates.
  • Cobble (Particles 64 mm to 128 mm): About the size of an orange, cobbles are the framework for bar deposits in river systems. When settled they form a surface that is difficult to mobilize from and creates roughness that encourages small particles to deposit on top of them. While waters flow over through and under these habitat formations the sediments caught provide a diversity of flow in depth and velocity which species depend on in streams.
  • Boulders (Rocks larger than 128 mm): These create physical barriers in rivers that help form log jams, leading to diverse flow patterns and detailed habitats for a range of organisms.

Sources of Sediment in River Systems

image
Fine sediments entering the confluence of the North Fork and the East Fork North Fork after rain dropped on the the Monument Fire scar in July 2023.

Sediment can enter river systems through multiple processes, each contributing to the overall sediment dynamics and ecology of the river. Key sources of sediment include:

  • Erosion: As water flows over land soil and rock can move with it. Depending on the landscape and the soil content these sediments can be delivered to rivers, especially during heavy rainfall or rapid snowmelt.
  • Runoff: Rain and melting snow can wash fine sediments from forests, fields, urban areas, roads, and construction sites into nearby streams and rivers.
  • Bank Collapse: Riverbanks can be eroded by the current of flowing water, particularly in areas with high flow velocities, resulting in banks collapsing directly into the water.
  • Tributary Inputs: Creeks can contribute sediment as they flow into larger rivers, contributing sediments from their own drainage basins.
  • Human Activities: Construction, mining, and land clearing can disturb soil and rock, increasing sediment loads in nearby rivers. Deforestation can also enhance erosion rates when tree roots are damaged or destroyed, leading to hillslope failures into streams.
  • Natural Events: Floods, landslides, wildfires and volcanic eruptions can rapidly introduce large amounts of sediment into river systems, altering habitats and turbidity.
  • Aquatic Organisms: Organisms can influence sediment storage by building dams (beavers) or webs between gravels to capture food and fines (net-spinning caddisfly). Organisms can also mobilize sediment when building nests (salmon) or grazing for food, such as crayfish winnowing fine sediments from amongst gravels.

Pool and Riffle Dynamics

MinuteEarth – Why do Rivers Curve?

When the slope of a river is greater than 2 percent, water moves quickly over rocks and other obstacles creating rumbling mountain streams. Moving downstream as the valley walls open and slope decreases a pool and riffle river system will form. The creation of alternating river bends is based on physical obstacles along the river’s path and water velocity which will form deep (pools) and shallow (riffles). The dynamic plays a crucial role in the movement and storage of sediment as the river runs its course to the ocean. A few key terms:

  • Pools: Pools are deep areas of the river that form over time with flow velocity that scours (or digs) small unstable sediments from the area. Pools offer dynamic habitat during different times of the year that include a varied temperature column in the summer months when waters slow within the river. In winter, during high flows, pools are areas where faster water occurs. The increase in speed in pools relative to their companion riffles is what is responsible for pools scouring to depths found in summer.
  • Riffles: During lower flows that occur in late spring through fall, faster currents are found in riffles because the water surface is steeper on them. Riffles are nursery areas for macroinvertebrates and help oxygenate the water and benefit species that thrive in turbulent conditions. High flows in winter that scour pools deposit sediments from the scour on riffles downstream, and in this way a pool-riffle sequence of habitats is formed and maintained on alluvial rivers.

Salmon and Sediment Interaction

image

Salmon are a keystone species in freshwater ecosystems, and their interaction with sediment is crucial for their lifecycle. During spawning, female salmon seek out gravel beds on riffles and near the streams banks to lay their eggs. These gravel beds, composed of appropriately sized sediment, are essential because they provide the necessary water flow to provide oxygen to fertilized eggs, ensuring their development to the fry stage.

Additionally, the composition and stability of sediment in spawning areas can influence the quality of habitat available for juvenile salmon. Fine sediments, often stirred up during high flow events, can cover spawning habitats, suffocating eggs and reducing the overall success of salmon populations when fines are overly present.

However, Trinity River geomorphologists are learning that too few fines also pose survival risks to salmon. When spaces between gravels where eggs are spawned are left open, turbulence is created through flow within the salmon nest and can jiggle eggs causing abrasion to the egg membrane, leading to mortality. Too few fines can also cause surface flows in a river to be conveyed entirely through a bar, sieving off the juvenile salmon onto dry bar surfaces for predation by birds.

image
Join us Feb. 26 for Science on Tap featuring Dr. Todd Buxton for “Fine Sediment in the Trinity River: History, effects, and current Impacts”

Maintaining a balanced sediment regime within pool and riffle systems is essential not only for river ecology but also for the conservation of salmon, whose life cycles are intricately tied to the health of their sediment-rich habitats. As we learn more about these systems, it becomes increasingly important to recognize how sediment influences river health and ecology, guiding conservation efforts to ensure the survival of these vital ecosystems.

We invite you to join us Wednesday, Feb. 26 for Science on Tap! Dr. Todd Buxton will dive into Trinity River Fine Sediment, history, effects and current impacts. The event is held at the Trinity County Brewing Company and starts at 6pm.

The Year Ahead: Science Branch

image
Eric Peterson, Science Coordinator out monitoring algae on the Trinity River in 2024. [Jeanne McSloy, Trinity River Restoration Program]

The Program and partners have approved winter-time Environmental Flows for the next few water years. The intent of moving flows into the winter time is to provide flow conditions that Trinity River salmonids evolved to exploit.  From a scientific point of view, that intent and the reasons behind it are organized into hypotheses that the Trinity River Restoration Program will be testing throughout implementation of the project. 

For the year ahead with the implementation of a new flow management the Program will continue with both short and long-term monitoring projects. Long-term monitoring projects include, outmigrant monitoring (tracking the number and size of young fish heading out to sea), adult escapement monitoring (tracking the number and size of adult fish returning from the sea). Shorter duration studies to examine the flow changes include acoustic monitoring of rock movement, tracking the development of periphyton (algae) on newly inundated floodplains, and investigating the benthic macroinvertebrate (fish food) response to the flows.

image

Currently in the river, spring and fall run Chinook Salmon eggs are hatching and young fish are starting to emerge. Outmigrant monitoring will be ramping up to count these young fish on their migration. The Program is also preparing for some research on how low floodplains, like the Oregon Gulch inundation areas, develop vegetation and if it differs from our more traditional channel restoration sites. 

Last but not least, the Limiting Factors Analysis, is on schedule with initial model development. The project intends to dissect the many limiting factors during the lifecycle of Trinity River Chinook so that the Program can better analyze it’s role and ways to continue restoration efforts more effectively. As the model is developed the task group will assemble the data to parameterize the model, an effort that will continue through 2025. Watch for results of those efforts to come out in summer of 2026! 

The Year Ahead: Implementation Branch

Aerial Image of the Upper Conner Creek Restoration Site during phase 1 restoration in fall of 2024. [Elliot Sarnacki, Trinity River Restoration Program]

The Trinity River Restoration Program is working on two Trinity River channel rehabilitation projects in 2025; Phase II of the Upper Conner Creek Rehabilitation Project located in Junction City, CA and Phase I of the Sawmill Gravel Processing Site Rehabilitation Project located in Lewiston, CA.

Upper Conner Creek – Phase II

image of some of the restoration area before construction at Upper Conner Creek phase II in July 2024. [Kiana Abel, Trinity River Restoration Program]

The second phase of the Upper Conner Creek Rehabilitation project includes similar physical habitat improvements constructed under Phase I such as floodplain connectivity, coarse sediment additions and large wood features. Recreational improvements include a new launch ramp and public restroom for the Bureau of Land Management – managed Junction City Campground River Access.  Phase II of the Upper Conner Creek will begin in January 2025.

Sawmill Gravel Processing Site

Sawmill 2010. Ken DeCamp

The Sawmill Gravel Processing Site Rehabilitation Project Phase I is another implementation of the mechanical channel rehabilitation component of the Trinity River Restoration Program and is also intended to function in concert with the managed flow and sediment regimes to restore physical habitats that promote the spawning and rearing success of salmon in the Trinity River. As implied in the project name, the focus of the project is to rehabilitate an area that has thus far been used only as a source area and processing site for supplying coarse sediment used in gravel augmentation and channel reconstruction activities elsewhere on the river. Rather than leaving the area disturbed when processing activities conclude, the Trinity River Restoration Program recognized the opportunity to optimize the habitat and ecosystem benefits by developing a rehabilitation design centered on that area.

Environmental Assessments

Sediment was placed upriver of the Lewiston Bridge prior to high flow in 2023 to encourage habitat formation down river. [Todd Buxton, Trinity River Restoration Program]

The Trinity River Restoration Program’s Sediment and Wood Augmentation Environmental Assessment is complete. In addition to multiple existing sites and based on site-specific annual recommendations from the The Trinity River Restoration Program’s Physical Workgroup and Riparian and Aquatic Workgroup, the Environmental Assessment establishes new augmentation sites and allows for sediment and wood placement to address the a shortage of those key ingredients of riverine habitat upstream of Indian Creek. 

The new augmentation sites are in the upper reaches of the Trinity River downstream of Lewiston Dam and include Dark Gulch, Trinity House Gulch, Steel Bridge, and Vitzthum Gulch. River corridors which periodically mobilize sediment and large wood perform diverse physical and ecological functions. Contributions to the disturbance regime disperse organisms and provide refugia during baseflow periods and during floodplain inundation events. The Sediment and Wood Augmentation Environmental Assessment is available by clicking below.

In partnership with the US Forest Service’s Shasta-Trinity National Forest and BLM’s Redding Field Office, TRRP is finalizing a Programmatic Environmental Assessment (PEA) to evaluate aquatic habitat restoration activities in the Trinity River watershed. The Watershed PEA analysis will focus on restoration activities that improve the quality and quantity of accessible cold-water aquatic habitat. As a programmatic analysis, watershed restoration projects would be implemented within the Trinity River watershed, in Trinity and Humboldt counties, with site specific surveys and compliance for individual projects tiered to the PEA.

Watershed Grantees

In 2025, the following watershed projects are slated to be implemented.

Salt Creek Floodplain Restoration – The Watershed Research and Training Center

This project aims to improve 2,000 feet of heavily degraded salmonid habitat along Salt Creek, a South Fork Trinity River tributary, by reconnecting the creek to its historic floodplain using engineered and process-based restoration techniques. The project will increase aquifer recharge and storage for slow release to temper a thermal barrier for salmonids, restore geomorphic functions that will improve salmonid spawning gravels, create pools for summer cool water refugia, increase habitat heterogeneity for winter flow high-velocity refugia, and improve native riparian flora, all of which will increase the resilience of aquatic species from the impacts of climate change. Implementation is scheduled for summer 2025 and summer 2026

Upper Hayfork Creek Assessment and Planning Study – The Watershed Research and Training Center

This project will assess over 17 stream miles and 700 floodplain acres within the upper Hayfork Creek watershed, a major tributary to the South Fork Trinity River, to identify restoration opportunities to improve salmonid habitat quality and quantity. The project
will utilize GIS and LiDAR analyses, field measurements of salmonid presence and habitat characterization, and a comparison of ecological flow needs with water availability to produce one Restoration Assessment and Planning document with a priority list of restoration projects and one restoration design to advance toward implementation.

Water Resiliency in the Greater River Trinity Watershed for Aquatic Ecosystem and Human Domestic Needs – The Watershed Research and Training Center

The organization is tasked to plan and implement four storage tank arrays and establish long-term forbearance agreements to reduce annual water withdrawals from key tributaries to the Trinity River during the summer low-flow period. The project will increase the quality and quantity of natural habitats crucial to the survival of anadromous fishes and aquatic organisms in the Trinity River Watershed. Implementation is scheduled for spring 2025.

Weaver Creek Habitat Restoration Implementation – The Yurok Tribe Fisheries Department

The Yurok Tribe Fisheries Department will create instream habitat and develop new floodplain areas along the upper section of Weaver Creek, a tributary to the Trinity River. The project will control the spread of invasive plant species, establish habitat connectivity during summertime baseflow conditions, and support populations of threatened Coho Salmon. The Tribe will construct new habitat features including 4.96 acres of floodplain, 1.23 acres of overflow channels, 0.94 acres of constructed riffles, 0.37 acres of channel fill, and 0.36 acres of low flow channels. These enhancements will increase the structural complexity of the project reach and mitigate the impacts of low flows, which can lead to dry channel conditions on Weaver Creek. The project area is identified in the state and Federal recovery plans for Coho Salmon, which encourage floodplain reconnection and streambed restoration in Weaver Creek. The Yurok Tribe is collaborating with the Nor Rel Muk Wintu Nation, Federal land managers, the Weaverville Sanitary District, and adjacent landowners for this restoration project. Implementation is may be implemented as soon as summer 2025.